
Hardware Trojan Detection Using Exhaustive Testing of k-bit Subspaces

Nicole Lesperance, Shrikant Kulkarni, and Kwang-Ting (Tim) Cheng

ECE Department - UC Santa Barbara

Santa Barbara, CA 93106, USA

{nlesperance, skulkarni, timcheng}@ece.ucsb.edu

Abstract— Post-silicon hardware Trojan detection
is challenging because the attacker only needs to im-
plement one of many possible design modifications,
while the verification e↵ort must guarantee the ab-
sence of all imaginable malicious circuitry. Existing
test generation strategies for Trojan detection use con-
trollability and observability metrics to limit the mod-
ifications targeted. However, for cryptographic hard-
ware, the n plaintext bits are ideal for an attacker to
use in Trojan triggering because the size of n prohibits
exhaustive testing, and all n bits have identical con-
trollability, making it impossible to bias testing using
existing methods. Our detection method addresses
this di�cult case by observing that an attacker can
realistically only a↵ord to use a small subset, k, of all
n possible signals for triggering. By aiming to exhaus-
tively cover all possible k subsets of signals, we guar-
antee detection of Trojans using less than k plaintext
bits in the trigger. We provide suggestions on how to
determine k, and validate our approach using an AES
design.

I. Introduction

Hardware Trojans are a major concern for both semi-
conductor design houses and the U.S. government [1].
Economic factors mandate that design, manufacturing,
testing, and deployment of silicon chips is a global e↵ort
involving multiple companies and countries. If a single
contributor in this process decides it advantageous to in-
sert malicious functionality into the chip, referred to as
Hardware Trojans, the consequences can be disastrous.
Goals of Hardware Trojans range from denial of service

attacks such as premature aging and bus deadlock to sub-
tler attacks which attempt to gain undetected privileged
access on a system, leak secret information through side
channels, or weaken random number generator output [2].
A hardware Trojan consists of two components: a trig-

ger and payload. The trigger is a set of conditions that,
when met, cause a Trojan to exercise its malicious func-
tionality. These conditions range from none, such as in
[3], which continuously leaks AES secret key bits by subtly
modifying the circuit’s power consumption, to the occur-
rence of very specific patterns or sequences of analog or
digital signals, such as in [4], where a Trojan inserted in
an AES circuit waits for a sequence of 3 specific plaintext
values before delivering its payload.
The payload realizes the goal of the Trojan circuitry,

and can either a↵ect circuit functionally or leak informa-
tion without causing “incorrect” circuit behavior. Suc-
cessful detection of Trojan circuitry must both ac-
tivate the Trojan and propagate evidence of mali-
cious behavior to observable points.
Existing techniques used to detect hardware Trojans in

a large chip population fall into two main categories:

1. Techniques identifying anomalies in chip side-channel
characteristics such as power consumption and delay

2. Techniques identifying Trojans in the functional do-
main by improving circuit observability and activa-
tion likelihood

Techniques which identify chips containing Trojans by
comparing side-channel characteristics such as power [5, 6]
and delay [7] with Trojan-free chips or models derived
from the Trojan-free netlist, unlike functional testing,
have the ability to identify malicious behavior which does
not a↵ect any values of known circuit nodes.
However, side-channel detection methods face ever-

increasing process variation, which can overshadow the
influence a Trojan has on the chip signature, especially for
large complex designs such as SoCs. Beyond this, these
focus mainly on the detection mechanism, and still rely
on the ability of the test vectors or placement of scan
flip-flops to partially or fully activate the Trojan.
Determining which design states should be explored

during testing to activate Trojan circuitry, and how to
best propagate Trojan behavior to observable points is an
important task, on which the e↵ectiveness of both side-
channel and functional detection methods rely on.
Our work presents a post-silicon test vector generation

strategy, especially applicable to cryptographic hardware,
that detects Trojans with triggers based on patterns and
sequences of digital signals. A stealthy Trojan has a very
small probability of being activated during both the ver-
ification e↵ort and during normal operation, but is rela-
tively easy for the adversary to force.
Many existing methods for post-silicon test vector gen-

eration, such as [8, 9, 10, 11], use node controllability
and observability to bias the test set. The assumption
is that in order to decrease Trojan activation probabil-
ity, the adversary will select signals that have very low
0 or 1-controllability, making the combination of these
rare values unlikely to occur during testing. These strate-
gies first identify random-pattern resistant nodes in the
circuit, and their corresponding rare values, then derive

an optimal test set to trigger low probability node values
multiple (N) times.
The usability of a Trojan from the attacker’s point of

view is severely diminished if the attacker cannot reli-
ably control the triggering signals. Existing methods as-
sume all inputs are attacker controllable, hence every sin-
gle node is a candidate triggering signal for an attacker
with complete knowledge of the design.
In cryptographic hardware, the key bits are unknown

to the attacker, therefore any internal circuit nodes influ-
enced by key bits will be uncontrollable, hence cannot be
reliably used as triggering signals. For example, in AES,
the first step is to XOR the plaintext with key bits [12],
leaving the plaintext bits as the only viable triggering sig-
nals. For many Trojans proposed for AES [4, 13] and RSA
[6], this is indeed the case, and testing strategies based on
rare circuit values are not applicable since all plaintext
bits have identical controllability and observability.
Challenge-response protocols implemented on both

servers and embedded systems such as smart cards, al-
low the challenger to select the plaintext. In the case of
AES, this gives the attacker 128 bits to choose from.
Figure 1 illustrates the AES Trojan implemented in [4]

and [13]. Both works use a subset, k, of n bits (where
n = 128), and the Trojan payload implements Piret’s dif-
ferential fault attack [14], allowing recovery of all secret
key bits after observing as few as 2 faulty ciphertexts.
Even if the attacker utilizes only a small subset of the

128-bit plaintext, unless the verification team can discover
which subset the attacker will use, they are left facing the
impossible task of verifying all 2128 plaintext values.
Since exhaustive testing is infeasible, our solution

makes the following observation: An attacker can re-
alistically only a↵ord to use a small subset, k, of
all n possible controllable signals for triggering.
Our Trojan detection strategy uses this observation, in-

stead of controllability and observability metrics, to re-
duce the state space targeted by the test vectors. To
our knowledge, this is the first work to address scenar-
ios where controllability and observability metrics do not
provide a foothold for biasing testing. Our approach is
exhaustive, but with respect to k instead of n, meaning
that our test vectors are guaranteed to activate a Trojan
if the k-value chosen is realistic.
Section IV.B discusses the factors involved in deter-

mining k, but intuitively a hardware Trojan containing a
128-bit comparator or large counter will have a noticeable
area and power footprint. The feasibility of inserting such
circuits is far less during fabrication, but Trojans inserted
pre-silicon have the opportunity to be detected by formal
methods, simulation, and analysis of the RTL code. Our
work also provides additional strategies for the case where
one cannot a↵ord exhaustive testing with respect to the
estimated k-value.
The rest of the paper is organized as follows: Sec-

tion II specifies the class of Trojans our solution detects
and relates their activation to the concept of k-subspace
coverage, Section III details how to generate test vec-
tors providing exhaustive k-subspace coverage, Section IV

Initial Round

8th Round

Final Round

Key
Scheduler

AESTriggering
Logic

128

127

128

k
plaintext

ciphertext

Payload
...

...

key

1

1

128

128

128

Fig. 1. AES Fault Attack Trojan

presents a case study where di↵erent Trojan triggers are
inserted in a 128-bit AES circuit and discuss how area
overhead metrics can influence the selection of k, and Sec-
tion V summarizes our contributions.

II. Problem Definition and Formulation

A. Interaction with Existing Test and Detection Methods

Traditional manufacturing tests target stuck-at or de-
lay fault models, based on circuit structure. Trojans in-
serted during or after fabrication are not present in the
gate-level model therefore are not targeted by test pattern
generation tools or candidates for observation points.
Because of the confusion and di↵usion properties of

cryptographic algorithms, the di�cultly in Trojan detec-
tion lies in triggering the Trojan, not propagating faulty
behavior cause by the Trojan to observable points. For
example, a Trojan payload may shorten the number of
rounds in a cipher or create a fault during encryption. In
both cases, the resulting cipher text will di↵er from the
Trojan free version, and is easily detectable.
Therefore, for the remainder of the paper we focus on

test generation strategies for trigger activation, and do
not address the class of Trojans which leak circuit infor-
mation through side channels. However, our method can
be used in conjunction with existing side channel detec-
tion methodologies to magnify the di↵erence between Tro-
jan and Trojan-free side channel fingerprints in the case
where information leakage only occurs after a triggering
condition is met.

B. Trojan Trigger Models

Our work aims to detect Trojans whose digital triggers
take as input k design signals, where 0 < k n, and n is
the total number of attacker controllable signals.
For the attacker, increasing k decreases the probabil-

ity that the Trojan is triggered during testing, however
an increase in k leads to a larger Trojan area and power
footprint, making the circuitry more visible.
We consider 3 classes of k-bit triggers:

TABLE I

Activation Probabilities during a sequence of t n-bit
uniform random test vectors for each trigger model

Combinational Partial Ordering

1�
�
1� 1

2k

�
t

1�
�
1� 1

2km

�(t

m

)

Contiguous Ordering

1�
�
1� 1

2km

�
t�m+1

1. Combinational: activation occurs immediately
upon recognition of a k-bit pattern

2. Partially Ordered Sequence: activation occurs
upon recognition of a partially ordered sequence of
m k-bit patterns

3. Contiguously Ordered Sequence: activation oc-
curs upon recognition of a contiguous sequence of m
k-bit patterns

The Trojan activation probabilities during a sequence of
t n-bit uniform random test vectors for trigger classes 1 -
3 are given by the equations in Table I. Depending on the
desired Trojan area overhead and activation probability,
the attacker can implement any of the 3 trigger types
inside the Triggering Logic block in Figure 1.
It should be noted that for the partial and contiguous

orderings, the m patterns need not be unique. However,
implementing even a few di↵erent k-bit pattern recogniz-
ers leads to an significant increase in Trojan area, as seen
in Table VII in Section IV.A, without decreasing acti-
vation probability. Therefore, it is very reasonable to as-
sume that only 1 k-bit pattern is used in conjunction with
a counter.
Counting m patterns before triggering greatly reduces

activation probability. A special case of trigger classes 2
and 3 is a large counter that counts clock cycles instead
of patterns. [15] refers to this type of trigger as a “time
bomb”, and proposes periodically performing power resets
during circuit operation to limit the maximum counter
value, forcing the attacker to use a smaller counter if the
Trojan is ever to trigger in the field. If circuit validation
is run for a time period exceeding the power reset period,
the Trojan is guaranteed to be triggered. For the more
general class of sequential triggers that we are considering,
power resets e↵ectively limit the value of m, but the test
vectors must still ensure the appearance of the magic k-bit
pattern m times before activation.

C. Subspace Coverage

Let n be the number of possible attacker-influenced cir-
cuit nodes. Some examples are the plaintext bits in cryp-
tographic hardware or bus data bits on a processor run-
ning untrusted software or firmware.
If a Trojan can incorporate a maximum of k bits into

its triggering mechanism, the goal of the detection ef-
fort is to apply the smallest number of n-bit test vectors,

|T
min

(n, k)|, which exhaustively cover all 2k possible val-
ues that can occur on all

�
n

k

�
possible sets of k-bit signals

(k-subspaces), guaranteeing Trojan activation.

Subspace 1:

0 1 2 3

32

0 1

1 2

0

0

1

3

3

2

Subspace 2:

Subspace 3:

Subspace 4:

Subspace 5:

Subspace 6:

Fig. 2. All 6 2-bit

subspaces in a 4-bit vector

Figure 2 shows all 6 possi-
ble 2-subspaces when n = 4.
One simple method of generat-
ing the test vectors for this set
is to target each subspace indi-
vidually, resulting in

�
n

k

�
⇥2k =�4

2

�
⇥22 = 24 test vectors. How-

ever, since only 16 test vec-
tors are needed to exhaustively
test 4-bits, it is obvious that
this method does not generate
T

min

(n, k).
An example exhaustive

2-subspace test set gen-
erated by trial and error
contains only 5 vectors:
{0000, 0111, 1110, 1101, 1011}.
These 5 vectors guarantee activation of a trigger using
any 2 out of 4 controllable bits matching any 2-bit
pattern.
Clearly, 2k |T

min

(n, k)| 2n, but it is not obvious
how to generate T

min

(n, k) systematically, or determine
|T

min

(n, k)|.

III. Our Solution

A. Test Generation for Exhaustive k-subspace Coverage

A method for generating several sets of n-bit test vec-
tors which exhaustively cover all k-subspaces is given in
[16]. Each test set is composed of 1 or more sets of con-
stant weight vectors. A set of constant weight vectors is
the set of all n-bit vectors with a given Hamming weight
w. There are

�
n

w

�
vectors in a constant weight set.

There are n�k+1 test sets to choose from, and each is
described by a set of weights, which are found by solving
Equation 1 with n� k + 1 di↵erent values for c.

w ⌘ c mod (n� k + 1), 0 c n� k (1)

The number of test vectors in each test set is
X

all weights

✓
n

w

i

◆
(2)

For example, let n = 8 and k = 3. Equation 1 becomes

w ⌘ c mod (6), 0 c 5 (3)

There are 6 di↵erent test sets which can exhaustively
cover all 3-subspaces. The weights and test lengths are
given in the chart below.
Clearly, not all generated test sets are optimal. The

test set composed of all vectors with Hamming weights 1
and 7 is the smallest. The weights for the smallest test
set are given by Equation 4. The size of the minimal test
set, |T

min

(n, k)|, is given by Equation 5 [16].

w0 =

�
k

2

⌫
, w1 =

�
k

2

⌫
+ (n� k + 1) (4)

TABLE II

Test Sets for n = 8, k = 3

c Weight Set Test Length, |T (8, 3)|
0 {0, 6} 29
1 {1, 7} 16
2 {2, 8} 29
3 {3} 56
4 {4} 70
5 {5} 56

|T
min

(n, k)| =
✓

n⌅
k

2

⇧
◆
+

✓
n

k �
⌅
k

2

⇧
� 1

◆
(5)

B. Sequential Triggers

If the Trojan is triggered by partially or continuously
ordered sequences of m k-bit patterns, the minimal k-
subspace exhaustive test set, T

min

(n, k), provided in the
previous section does not guarantee activation.
Partial Ordering: All partially ordered sequences

of m k-bit patterns can be exhaustively tested using
|T

min

(n, k)|⇥m vectors by repeating T

min

(n, k) m times.
Contiguous Ordering: If the m patterns can be dis-

tinct, then |T
min

(n, k)|m test vectors are needed to ex-
haustively cover this scenario! If the same k-bit pattern,
occurring m times in a row, triggers the Trojan, we can
repeat each vector in T

min

(n, k) m times to exhaustively
cover this case using only |T

min

(n, k)|⇥m test vectors.

C. Example Test Set Sizes

Table III illustrates how n, m, and k a↵ect the test
set size for exhaustive k-subspace testing. For Trojans
with m > 1, Table III shows the test length assuming
either partial ordering of m possibly distinct patterns, or
contiguous ordering of m identical patterns.

TABLE III

Test Set Length for Exhaustive k-subspace Coverage

n m k Test Set Length

128 1 2 27

128 1 4 213

128 1 8 223

128 1 16 240

128 1 32 267

128 4 8 225

128 8 8 226

128 10000 8 237

256 1 8 227

256 10000 8 241

2048 1 8 239

2048 10000 8 253

Increasing k and n results in exponential growth in test
size. Increasing m causes linear growth in test size, and
can be limited by using the power reset technique [15].

D. When Exhaustive k-subspace Testing is Too Expensive

Although exhaustive k-subspace coverage requires
fewer than 2n vectors, test size grows exponentially with
increases in n and k, as seen in Table III, in some cases
making exhaustive testing infeasible. Let k

max

be the
maximum number of bits a Trojan trigger can utilize, and
T

max

be the number of vectors budgeted for testing.
When |T (n, k

max

)| T

max

, the exhaustive k

max

-
subspace test set is both guaranteed to activate the Trojan
and within T

max

. However, when |T (n, k
max

)| > T

max

,
other testing strategies must be considered.
Since our method aims to detect Trojans in de-

signs where signal controllability and observability can-
not guide test vector selection, the only alternative test-
ing strategy is the application of uniform random vectors
to the attacker controllable bits in the design. Depending
on T

max

, n, k, and k

max

, one can consider the following
test sets:

• Strategy 1: T

max

uniform random vectors

• Strategy 2: The complete exhaustive k-subspace
test set where k < k

max

, and |T (n, k)| T

max

• Strategy 3: The complete exhaustive k-subspace
test set where |T (n, k)| ⇡ T

max

2 in addition to T

max

2
random vectors (excluding those already in T (n, k))

The Trojan activation probability, p

a

, for Strategy 1
is given in Table I, p

a

for Strategy 3 is computed using
simulation, while the derivation of p

a

for Strategy 2 is
given below.
Strategy 2 p

a

: The probability of observing a ran-
dom k

max

-bit pattern in the k-subspace exhaustive test
set T (n, k), where k < k

max

, can be derived by consider-
ing the possible Hamming weights, w

troj

, for the k
max

-bit
triggering pattern. 0 w

troj

 k

max

.
T (n, k) contains all possible n-bit vectors with Ham-

ming weights {w0, w1} given by Equation 1. T (n, k) is
guaranteed to activate a Trojan with weight w

troj

if the
k

free

= n � k

max

bits unused by the Trojan can be as-
signed a Hamming weight x such that

w

troj

+ x = w0 or w1 (6)

f(T,w
troj

, k

max

) =

⇢
0 6 9 a solution to Eq. 6
1 9 a solution to Eq. 6

(7)

By enumerating all possible trigger pattern Hamming
weights and considering how many such patterns exist
for a given n, the number of patterns detectable by any
given T (n, k) can be computed, leading to the formula for
activation probability given in Equation 8.

p

a

=

P
k

max

w

troj

=0

�
k

max

w

troj

�
⇥ f(T,w

troj

, k

max

)

2kmax

(8)

Comparisons and Discussion: Table IV compares
the activation probability given for Strategy 2 with the
activation probability for T

max

uniform random vectors
when n = 128. Table V shows how the mixed test set

TABLE IV

Activation Probabilities for n = 128

k
max

k |T (n, k)| p
a

(T (n, k)) p
a

(rand)

16 4 213 0.00235 0.1184
16 8 223 0.04904 0.9999
32 4 213 1.309e-07 1.922e-06
32 8 223 1.093e-05 0.00256
32 16 240 0.004551 0.9999
64 4 213 1.163e-16 4.476e-16
64 8 223 3.919e-14 5.968e-13
64 16 240 3.163e-10 8.263e-08

TABLE V

Activation Probabilities for n = 128

k
max

k |T (n, k)|, |T
rnd

|, p
a

p
a

|T
total

| (mixed) (rand)

8 3 256, 256, 512 0.6574 0.8652
16 3 256, 256, 512 0.0036 0.007782
20 3 256, 256, 512 0.0003 0.0004882
10 5 214, 214, 215 0.9999 0.9999
16 5 214, 214, 215 0.213 0.3911
20 5 214, 214, 215 0.017 0.03053

(Strategy 3), compares with the uniform random vectors
for n = 128 and various values of k and k

max

. |T (n, k)| is
the number of test vectors in the exhaustive k-subspace
test set, |T

rnd

| is the number of weighted random vectors
used, and |T

total

| = |T (n, k)|+ |T
rnd

|.
Exhaustive k-subspace test sets always have lower ac-

tivation probabilities than the same number of uniform
random vectors when k

max

> k. This is because uniform
random vectors sample from the entire space of 2n possi-
ble vectors while T (n, k) is restricted to vectors of particu-
lar Hamming weights. As k

max

becomes larger compared
to k, there are more Trojan trigger Hamming weights not
targeted by exhaustive k-subspace vectors that uniform
random vectors still sample from.
The advantage of using exhaustive k-subspace test vec-

tors for a feasible k is that activation for all subspaces
smaller than k is guaranteed. Because hardware Tro-
jan insertion is challenging, especially during fabrication,
k values smaller than k

max

are more likely, and exhaus-
tively testing these possibilities is advantageous.
If random vectors can be used in combination (Strategy

3) to target the less likely larger k values, the activation
probability is closer to that of the uniform random vec-
tors. Strategy 3 provides a balance between guaranteed
activation for smaller k and optimal sampling of the re-
maining state space with random vectors.

IV. AES Trojan Case Study

A. Area Overhead

We have implemented the Trojan in Figure 1 for each
of the 3 Trojan trigger types shown in Section II.B in an

AES encryption IP from OpenCores [17], where n = 128.
The infected designs were synthesized in 45nm technol-

ogy using the NanGate Open Cell Library [18] with Syn-
opsys Design Compiler (ver I-2013.12-SP2) and routed
using Cadence Encounter (v09.14) to quantify the over-
head due to the trojan logic. The percentage increase in
area for the infected design and equivalent 2-input NAND
gate count of the Trojan is shown in Table VI for various
m and k values.

TABLE VI

n = 128, Trojan % Area Increase, G: Gate Count
(Equivalent 2-input NAND Gates) (m identical patterns)

m
1 128 1024 8192

k % G % G % G % G

4 0.11 25 0.77 176 1.00 230 1.23 282
8 0.14 32 0.83 190 1.06 243 1.29 295
32 0.32 72 1.18 270 1.41 323 1.64 376
64 0.55 125 1.65 377 1.88 430 2.11 482
128 1.01 232 2.58 590 2.82 644 3.04 695

In Table VI, the m patterns are identical, not distinct.
It can be seen in Table VII that if the trigger is de-
signed with multiple distinct patterns, the area overhead
increases significantly. For example, when k = 4 and the
number of distinct patterns is 4, the area overhead is al-
ready greater than 1% of the original design.
The synthesis area and NAND gate-count increase sig-

nificantly as k and m increase, more sharply with an in-
crease in k than that of m. This is because the value of m
doubles with addition of only a single counter bit, while
increasing k requires an increase in the comparison logic
of the trigger. Thankfully, a limit on m can be enforced
by using the power reset strategy outlined in [15].

TABLE VII

n = 128, Trojan % Area Increase, G: Gate Count
(Equivalent 2-input NAND Gates) (m = 8192, multiple

distinct patterns)

distinct patterns
4 8 16

k % G % G % G

4 1.36 310 1.82 417 2.72 621
8 1.48 338 2.05 470 3.18 728
32 2.17 497 3.46 790 5.98 1368

B. Factors Influencing k

max

Determining the feasibility of di↵erent k
max

values re-
quires formulating a realistic threat model for each de-
sign and testing scenario. Our method can target Tro-
jans inserted both pre-silicon and during fabrication, but
the ease of Trojan insertion and the variety of detection
methodologies available at both stages di↵ers greatly.
Trojan Insertion Pre-silicon: On one hand, Tro-

jans inserted in 3rd party IP have practically no limits

on Trojan size, since the customer often only has access
to the net list or a pre-routed block, making it di�cult
to reverse engineer the design and identify Trojans or de-
tect increases in area due to Trojan circuitry. Also, post-
silicon side-channel detection methods will fail due to the
lack of Trojan-free gate-level models, as well as the lack
of golden reference chips.
On the other hand, complete observability during sim-

ulation and the availability of formal methods such as
equivalence checking provide powerful opportunities for
detection strategies such as [19]. If a Trojan is inserted at
gate level (post-synthesis), and attempts to hide within
minor changes made during the e↵ort to meet timing and
power requirements, the presence of several hundred ex-
tra gates will surely be noticed, as is the case for when
k > 32, and m > 128 as seen in Table VI. How reverse en-
gineering, code and circuit analysis, and formal methods
can be used to either prove k

max

= 0 or determine a rea-
sonable k

max

to target using our post-silicon exhaustive
k-subspace approach is a topic for further research.
Trojan Insertion During Fabrication: Modifying

the optical mask to insert Trojans is extremely di�cult.
Only a few works have actually fabricated circuits con-
taining hardware Trojans and analyzed the complexity of
insertion at mask level. In [13], Trojans instrumenting
Piret’s fault attack on an AES circuit are inserted into
the layout using a commercial Engineering Change Order
(ECO) placement tool. They vary the number of plain-
text bits used in the trigger until the software is no longer
able to place the ECO without completely re-routing the
entire design.
With a Core Utilization Rate of 99%, the tool cannot

place an ECO for a Trojan composed of as few as 16
AND gates. While further research is required to validate
this approach for estimating an upper bound on k

max

, it
is clear that k is severely restricted for mask level Trojan
insertion, making exhaustive k-subspace testing a feasible
and complete method for guaranteeing Trojan activation.

V. Summary and Conclusions

Our AES circuit case study shows that realistically,
an attacker can only incorporate k out of all n possible
controllable signals into a Trojan triggering mechanism,
where k << n. We use this observation instead of the
controllability and observability metrics widely employed
in existing methods to guarantee detection of Trojans in
cryptographic circuits using up to k triggering signals.
We also present additional strategies when the size of k
requires a prohibitively large exhaustive test set to guar-
antee detection.

Acknowledgements

We would like to acknowledge Professor Çetin Kaya
Koç for his valuable insight regarding this work.

References

[1] S. Adee, “The hunt for the kill switch,” IEEE Spectr.,
vol. 45, pp. 34–39, May 2008.

[2] M. Tehranipoor and F. Koushanfar, “A Survey of
Hardware Trojan Taxonomy and Detection,” IEEE
Des. Test, vol. 27, pp. 10–25, Jan. 2010.

[3] L. Lin, W. Burleson, and C. Paar, “MOLES: Mali-
cious o↵-chip leakage enabled by side-channels.,” in
ICCAD, pp. 117–122, IEEE, 2009.

[4] S. Ali et al., “Multi-level attacks: An emerging secu-
rity concern for cryptographic hardware,” in DATE,
2011, pp. 1–4, March 2011.

[5] Y. Liu, K. Huang, and Y. Makris, “Hardware trojan
detection through golden chip-free statistical side-
channel fingerprinting,” DAC, 2014.

[6] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,
and B. Sunar, “Trojan detection using ic fingerprint-
ing,” in Security and Privacy, 2007. SP ’07. IEEE
Symposium on, pp. 296–310, May 2007.

[7] K. Xiao, X. Zhang, and M. Tehranipoor, “A Clock
Sweeping Technique for Detecting Hardware Trojans
Impacting Circuits Delay,” IEEE Design & Test of
Computers, vol. 30, no. 2, pp. 26–34, 2013.

[8] F. Wol↵, C. Papachristou, S. Bhunia, and
R. Chakraborty, “Towards trojan-free trusted ics:
Problem analysis and detection scheme,” in DATE
’08, pp. 1362–1365, March 2008.

[9] R. S. Chakraborty et al., “Mero: A statistical ap-
proach for hardware trojan detection,” in CHES
2009, vol. 5747 of LNCS, pp. 396–410, Springer
Berlin Heidelberg, 2009.

[10] S. Narasimhan et al., “Multiple-parameter side-
channel analysis: A non-invasive hardware trojan de-
tection approach,” in HOST’10, June 2010.

[11] A. Sreedhar, S. Kundu, and I. Koren, “On reliability
trojan injection and detection,” J. Low Power Elec-
tronics, vol. 8, no. 5, pp. 674–683, 2012.

[12] http://csrc.nist.gov/publications/fips/fips197/fips
197.pdf, “Advanced encryption standard (aes).”

[13] S. Bhasin et al., “Hardware Trojan Horses in Cryp-
tographic IP Cores,” FDTC ’13, (Washington, DC,
USA), pp. 15–29, IEEE Computer Society, 2013.

[14] G. Piret and J.-J. Quisquater, “A di↵erential fault
attack technique against spn structures, with appli-
cation to the aes and khazad,” in CHES, Sep. 2003,
vol. 2779 of LNCS, pp. 77–88, Springer, 2003.

[15] A. Waksman and S. Sethumadhavan, “Silencing
hardware backdoors,” in Security and Privacy (SP),
2011 IEEE Symposium on, pp. 49–63, May 2011.

[16] D. Tang and L. S. Woo, “Exhaustive test pattern
generation with constant weight vectors,” Comput-
ers, IEEE Transactions on, Dec 1983.

[17] “Aes (rijndael) ip core,” 2002.
http://opencores.org/project,aes core.

[18] “Nangate 45nm open cell library,” 2011.
https://www.si2.org/openeda.si2.org/projects/
nangatelib.

[19] M. Banga and M. Hsiao, “Trusted rtl: Trojan
detection methodology in pre-silicon designs,” in
HOST’10, pp. 56–59, June 2010.

