Pairwise Proximity-Based Features for Test Escape Screening

Fan Lin, Chun-Kai Hsu, Alberto Giovanni Busetto, and Kwang-Ting Cheng
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106

Abstract—Test escapes are chips that pass the chip-level test program but fail system-level test or in the field. It is known that statistical analysis based on chip production test data could identify abnormalities for screening test escapes. It has also been shown that from the test chip data, we can generate revealing features for statistical analysis by comparing the measurement data to different references such as the measurement mean of a wafer, the spatial pattern of a wafer, and the measurements of neighboring chips. Given these existing features as the base features, this paper proposes a new class of transformations which could generate additional informative features based on pairwise proximities between chips on the same wafer.

Specifically, we apply multiple distance functions in a feature space composed of the base features and calculate the corresponding pairwise proximities between each pair of chips. Each of the resulting proximities could potentially embed some unique information that reveals the abnormalities of some test escapes. Then we convert the proximities into Euclidean vector spaces using constant shift embedding (CSE), which preserves the cluster structure through the conversion, so that traditional outlier analysis algorithms such as local outlier factor (LOF) can be applied. The LOF value and the first dimension in each embedded space are used as additional features for each sample. These new features, jointly analyzed with the base features, provide more revealing information about test escapes and thus further improve the test escape detection rate in our experiment based on production test data.

I. INTRODUCTION

Modern test programs have been including more tests to accommodate the growing chip complexity and stringent quality requirements. Even with the large number of tests applied under multiple environmental settings with different temperatures and supply voltages, there still are chips that pass the entire test program but fail at system-level applications. Such chips are referred to as test escapes and incur significant cost. Therefore, our goal is to apply statistical analysis on a huge amount of production test data for screening test escapes. The analysis is referred to as statistical test [1] and does not require any additional physical measurements.

For screening test escapes, a well-adopted method proposed by the Automotive Electronics Council is the part average test (PAT) [2]. For some specific test items, PAT compares a query chip’s measurements with the distribution of a population of reference chips, and discard the chip if it is an outlier. While PAT examines each test item independently, other methods investigate the multivariate properties of the chips using principal component analysis (PCA) [3], [4] and Mahalanobis distance [5]. In this paper, we propose a set of transformations for generating informative features that can reveal the abnormalities of test escapes compared with the population of good chips.

A concept of residual was proposed in [6] for outlier screening, and its applications using the neighboring chips’ measurements as the reference for deriving the residual, called nearest neighbor residual (NNR), have been studied in [7]–[10]. In [11], it was demonstrated that using residual vectors, which are vectors composed of the differences between a chip’s measurement values and expected values for each test item, as the features for statistical analysis could result in effective test escape screening. Three expected values were suggested in [11]: the mean of the measurements of chips on the same wafer, a value based on the bilateral filtered [12] spatial pattern of the wafer, and the median of the query chip’s eight nearest neighbors. For each test item, a chip’s measurement value is compared with the three expected values to reveal different aspects of the abnormalities of test escapes. Based on the three expected values, three feature sets were generated. [13] and [11] showed that each of the feature sets consists of information that could uniquely reveal some of the test escapes.

In this paper, we propose new features that are based on the pairwise proximities calculated from the abovementioned three feature sets, which are referred to as the base feature sets in the rest of the paper. Given a test data with T test items and D chips, we calculate a $D \times D$ proximity matrix based on a selected proximity/distance function in the 3T feature space constructed from the base feature sets. Different distance functions could potentially provide unique information that reveals the abnormalities of some test escapes. In this paper we investigate six different distance functions including cosine distance, correlation distance, and Minkowski distance with $p = 1, 2, 3, \infty$ for deriving the proximities.

The proximity representation of a dataset (represented by a $D \times D$ proximity matrix), however, could not be analyzed with the traditional machine learning algorithms that are designed for a Euclidean space, or a vector representation (represented by a $D \times T$ matrix containing all the feature values for all samples). Therefore, we apply a technique named constant shift embedding (CSE) [14] to convert the proximity information back into a Euclidean space. The most prominent property of CSE is the complete preservation of cluster structure in the embedded Euclidean space. The six distance functions would lead to six unique proximity matrices, and therefore results in six unique embedded spaces. In addition, we further investigate a traditional kernel PCA (kPCA) embedding method [15] with radial basis function (RBF) kernel and generate a seventh Euclidean space to provide even more information that could potentially separate test escapes.

In each of the seven unique embedded spaces constructed based on the pairwise proximities calculated from the base feature sets, we apply a density-based outlier analysis called local outlier factor (LOF) [16]. LOF compares a sample’s local density with its neighbors’ densities in a feature space and produces a single value. A sample with a relatively higher LOF value than that of the majority of the samples is more likely to be an outlier. We also observed that in the first dimension of each embedded space, some test escapes are away from the good chip population, which makes them easily separable. Therefore, we use the LOF value and the first dimension of each of the embedded spaces jointly as the new proximity-based features. Given the seven proximity definitions, 14 new features are generated. Based on these new features plus the 3T features from the base feature sets, we then perform feature reduction using canonical analysis [13]. Canonical analysis is a linear transformation that maximizes the separation between the two populations of samples.
functions we investigated are:

The following four distances are derived from *Minkowski distance* with different values for parameter \(p \):

\[
d_{ab} = \left(\sum_{j=1}^{T} |x_{aj} - x_{bj}|^p \right)^{\frac{1}{p}}
\]

- \(p = 1 \) (*Manhattan distance*):
\[
d_{ab} = \sum_{j=1}^{T} |x_{aj} - x_{bj}|
\]
- \(p = 2 \) (*Euclidean distance*):
\[
d_{ab} = \sqrt{(x_a - x_b)^T(x_a - x_b)}
\]
- \(p = 3 \):
\[
d_{ab} = \sqrt[3]{\sum_{j=1}^{T} |x_{aj} - x_{bj}|^3}
\]
- \(p = \infty \) (*Chebyshev distance*):
\[
d_{ab} = \max_{j} |x_{aj} - x_{bj}|
\]

In addition to the above six distance functions, we also include a traditional kernel PCA method [15] with a radial basis function (RBF) kernel:

- **RBF/Gaussian kernel**:
\[
k_{ab} = \exp \left(-\frac{(x_a - x_b)^T(x_a - x_b)}{2\sigma^2} \right)
\]

Each of the first six distance functions would lead to a unique proximity matrix, which will be further converted to a Euclidean space by CSE. For the proximity matrix generated using the RBF kernel, we apply the traditional kernel PCA algorithm for producing an embedded space without CSE to validate if the existing kPCA technique could also provide additional information.

III. Constant Shift Embedding

A. Concepts and Properties

After generating the proximity matrices based on multiple distance functions, we need to convert the proximity representation back into a vector representation before applying traditional outlier detection algorithms that are designed for a Euclidean vector space. *Constant shift embedding (CSE)* [14] is a technique to embed pairwise proximity data into the equivalent Euclidean embedding with no distortions. Specifically, CSE finds a Euclidean space in which the cost function of a Euclidean distance-based clustering algorithm such as *k-means* could be equivalent to the cost function of pairwise clustering on the proximity matrix. Detailed computations of CSE are out of the scope of this paper and can be found in [14].

Fig. 1 shows the process of producing new embedded feature spaces based on proximity matrices. From the original space \(O_1 \), which is composed of the base feature sets \(F_M \cup F_B \cup F_N \), we generate multiple proximity matrices based on different distance functions, followed by CSE for each proximity matrix to convert them into embedded Euclidean spaces. While CSE preserves the cluster structure through the conversion from a proximity representation to a Euclidean vector representation (e.g., the cluster structure is preserved between \(E_1 \) and \(P_1 \), between \(E_2 \) and \(P_2 \), and so on), the \(k \)-means cost function in the original feature space \(O_1 \) would also be identical to the cost function of pairwise clustering in the proximity matrix derived using Euclidean distance \(P_1 \) [19]. Therefore, applying \(k \)-means clustering in \(E_1 \) is equivalent to applying \(k \)-means clustering
in O_1. In this special case, in fact, the original space is already Euclidean. The added value of CSE in our analysis comes from the ability to assimilate also other arbitrary measures of proximity into more informative Euclidean spaces.

For a proximity matrix derived from O_i with distance functions other than Euclidean distance, e.g. P_2 using cosine distance, we can also consider it is derived from a virtually equivalent original feature space O_2 using Euclidean distance. In such case, applying k-means in E_2 would be identical to applying k-means in O_2. However, with the use of nonlinear distance functions to derive the proximities, a direct transformation from O_1 to O_i, where $i \neq 1$, is often not feasible. Analyzing E_i through the calculation of P_i followed by CSE, achieves the same goal without the need of finding O_i.

CSE involves eigendecomposition of the proximity matrix [14]. That is, the embedded space is composed of the eigenvectors of the proximity matrix. In our application, we analyze only the first few dimensions, which have relatively significant eigenvalues, for feature reduction. Let u be the number of eigenvectors found from the eigendecomposition, and $ev_1, ev_2, ..., ev_u$ be the sorted eigenvalues such that $ev_1 \geq ev_2 \geq ... \geq ev_u$, we estimate the number of effective dimensions of the embedded space by:

$$D_{eff}(i) = \sum_{j=1}^{u} \frac{ev_j}{ev_1}$$ (10)

For each embedded space E_i, we apply the outlier analysis algorithm in its corresponding dimensionality of $\text{ceil}(D_{eff}(i))$.

Note that for the seventh Euclidean space, we apply the traditional kernel PCA approach with an RBF kernel for generating the proximity and deriving an embedded space, without applying CSE. Our overall strategy is to generate as many potentially useful features as possible. Since kPCA is known to be one of the potentially useful transformations, it is worthwhile to include it to enrich our analysis. In the experimental results demonstrated later, we validate that features based on E_i’s and the kPCA space are both useful for further improvement of classification accuracy.

B. Distribution in the Embedded Space

For one exemplar wafer with two test escapes, Fig. 2 shows the distributions of good chips (blue dots) and the test escapes (red crosses) in the embedded spaces constructed based on the six types of proximities, with the number of effective dimensions marked above each distribution. The distribution in the embedded space constructed using kPCA is shown in Fig. 3.

It is clear that, in all the distributions, the good chip population exhibits a bimodal distribution - the good chips on a wafer are separated into two clusters through the proximity calculation and the CSE transformation. Fig. 4 shows the mapping of the distribution of good chips on the exemplar wafer in the embedded space constructed based on cosine distance to a wafer map. In Fig. 4a, chips are colored based on their locations, and the same colors are marked on the wafer map in Fig. 4b to indicate the corresponding locations of the chips on wafer. From the high-dimensional base feature space $F_M \cup F_B \cup F_N$, the proximities are able to reveal the underlying horizontal stripe pattern on the wafer even though in most test items this pattern are not directly observable and shadowed by some other more dominant types of spatial patterns. In other words, such stripe spatial variation may be subtle but consistently exists in most of the test items. Finding such hidden spatial patterns, which is feasible using the proposed analysis with proximities based on different nonlinear distance functions, could help the diagnosis of manufacturing/testing process and equipment such as multi-site probing.

Fig. 1: The conversion between proximity matrices and Euclidean spaces. CSE preserves the cluster structure through the conversion from a proximity matrix P_i to an embedded Euclidean space E_i.

Fig. 2: The distributions of the chips on a wafer in the first two dimensions of the CSE embedded spaces based on six different proximity/distance functions. Blue dots represent the good chips and red crosses mark the positions of test escapes. The numbers of effective dimensions are shown above each figure.

Defined in (10), the number of effective dimensions in embedded spaces based on cosine, correlation, Manhattan (Minkowski with $p =$
B. Feature Generation

As observed in Fig. 2, in all embedded spaces except one constructed based on Manhattan distance, which takes into account only the first order difference between chips, one of the two test escapes is exposed as abnormal and far from the bimodal distribution of the good chips, while the other test escape is indistinguishable from the good chips. Since our goal is to maximize the test escape detection rate while minimizing the amount of induced yield loss (good chips misclassified as test escapes), the classification accuracy would be higher if test escapes could be outlying in as many embedded spaces as possible, and the good chips that happen to be outlying in one embedded space to be closer to the normal population in other embedded spaces. Therefore, although one embedded space seems sufficient to expose the test escape as an outlier in Fig. 2, it improves the robustness of the method to include the distribution information in all embedded spaces for further analysis.

To analyze the distributions in multiple embedded spaces jointly, we convert the outlying level of each chip in each embedded space to a score, defined by local outlier factor (LOF) [16]. LOF is an outlier analysis algorithm that compares the local density of the sample with the densities of its neighbors. Let k-distance(p) be the distance between sample p and its k-th nearest neighbor, a reachability distance is defined by:

$$reach-dist_k(p, q) = \max\{k\text{-distance}(q), d(p, q)\} \quad (12)$$

where $d(p, q)$ denotes the distance from p to q. Including k-distance(p) in the reachability distance could produce a more stable result than using $d(p, q)$ directly.

Using a parameter $MinPts$ for k, the local reachability density of p is defined as:

$$lrd_{MinPts}(p) = \frac{1}{\sum_{q \in N_{MinPts}(p)} reach-dist_{MinPts}(p, q)} \quad (13)$$

where $N_{MinPts}(p)$ is the set of $MinPts$ nearest samples of p. Discussions about choosing the upper and lower bounds for $MinPts$ can be found in [16]. In our analysis, the range is set to $5 \leq MinPts \leq 10$.

The local outlier factor is then defined as:

$$LOF_{MinPts}(p) = \frac{\sum_{q \in N_{MinPts}(p)} lrd_{MinPts}(q)}{|N_{MinPts}(p)|} \quad (14)$$

The LOF value is a relative value indicating the outlying level of a sample compared with its neighbors. Typically, an LOF value close to (greater than) 1 tends to indicate an inlier (outlier), but the actual threshold is data dependent. With the local density approach, a sample with some distance to a dense cluster could have a much greater LOF value than another sample with the same distance to a sparse cluster, and thus be exposed as an outlier.

Now that we can express the outlying level of each chip by a single LOF value, we use these LOF values as our new pairwise proximity-based features. Instead of setting a threshold directly on the LOF values, we use the LOF values jointly with other base features for machine learning algorithms such as SVM for classification. Another simple observation from the distributions is that the detectable test escapes, away from the bimodal distribution, are typically closer to the origin in the first dimension of the embedded space. Therefore, we also include the first dimension of the embedded spaces as input features for further analysis. In total, 14 new features are generated from the 7 embedded spaces based on pairwise proximities.
C. Feature Standardization and Outlying Wafer Detection

There exist wafer-to-wafer variations in production test data, and we standardize each wafer individually with respect to the robust mean and standard deviation before any analysis to remove the shifting and scaling variations. However, although all the wafers we analyzed exhibit the bimodal distributions as in Fig. 2, we have observed noticeable variations in the 14 new features, especially the LOF values since they are relative values depending on the local distribution. Thus, we further standardize the new features generated from each wafer to z-scores using the robust mean and standard deviation calculated from each wafer, as mentioned in Section IV-A, to remove some higher order wafer-to-wafer variations that were not eliminated in the first standardization.

Fig. 5 demonstrates the robust mean and standard deviation of three of the new features: the first dimension in the embedded spaces constructed using Minkowski distance with \(p = 1, 2, 3 \) as the proximity measure. Each dot in the figure represents the statistics of one wafer. In Fig. 5a, most of the wafers have their robust means very close to zero in all three features, and in Fig. 5b, the robust standard deviation in the first dimension of the embedded space from Minkowski distance with \(p = 1 \) and that with \(p = 3 \) are highly correlated, while the variation in the dimension of Minkowski \(p = 2 \) is relatively negligible. More importantly, both Figs. 5a and 5b show some outliers away from the normal distribution. The wafers with these outlying values have very different characteristics in the new features from the majority of the wafers and should be excluded from statistical analysis.

\[
d_{\text{mah}} = \sqrt{(x_a - x_b)^T C^{-1} (x_a - x_b)} \tag{15}
\]

where \(C \) is the covariance matrix of the dataset. Intuitively, equation (15) computes the distance between two samples in a Euclidean space that is normalized with respect to the covariance matrix of the original Euclidean space, and therefore reveals outliers that has a smaller Euclidean distance to the major population but lies out of the shape of the major population’s distribution.

D. Feature Transformation and Classification

After the generation and standardization of the proximity-based features, we analyze them jointly with the base features for test escape screening. Our objective has been generating potentially revealing features without custom investigation for each dataset of which features are really more informative for test escape screening. Our framework creates a general collection of potentially useful features that can be applied to any dataset/product, which are suitable for known feature reduction and classification algorithms to automatically extract the most useful information out of them for high accuracy classification. In our experiments, we employ canonical analysis [13] to the joint feature sets, consisting of the base features and the proximity-based features, for feature reduction. Canonical analysis is a linear transformation which compacts the multi-dimensional separation between classes of samples into the first few dimensions in a transformed canonical space. In our analysis for test escape screening, there are two classes of samples: test escapes (positive samples) and good chips (negative samples), and compacting the separation in the high-dimensional feature space into a small number of features has been demonstrated to achieve significant runtime reduction and in some cases, greater classification accuracy, based on a conventional classifier such as SVM [13]. Specifically, we apply C-support vector classification (C-SVC) provided by LIBSVM [18] as the final classifier. The complete flow of generating the proximity-based features for statistical analysis is illustrated in Fig. 6.

V. EXPERIMENTAL RESULTS

In this section we present the results of analyzing the proposed proximity-based features jointly with the base features derived in [11] on a continue-on-fail production test data of an industrial product. We preprocessed the test data to remove confidential information while preserving all information that is relevant to the analysis. The dataset includes more than 700 wafers with 1000+ chips per wafer. We use 200+ wafers as the training set, 200+ wafers as the validation set for selecting SVM parameters, and the rest 200+ wafers as the testing set. The test program contains more than 200 parametric test items.

A. Test Escape Emulation

As this dataset does not include actual test escape information, we need to emulate test escapes for our analysis. The concept is to emulate test escapes using intrinsically defective chips with subtle syndromes in their test measurements. We identified faulty chips with minor failures, i.e. failed only one test item and passed all the other test items in the continue-on-fail test program, and replaced their failing measurements with the median value of their corresponding test items among the population of good chips. Through such process, we hid the direct failing evidences of the faulty chips but kept their subtle abnormal syndromes, if any, in all other passing test items intact. After this process, emulated test escapes would have measurement data that pass the entire test program, while their
requires further investigation and should be removed to improve the consistency between the training set and the testing set.

Fig. 8 shows the ROC curves of classification based on the base features plus different subsets of the proximity-based features. We investigated the results using the features based on the two embedding methods (CSE and kPCA) individually. Similar to Fig. 7, the test escape detection rates for using the base features plus the features based on each of the two embedding methods are lower than that using only the base features at a lower yield loss rate. In fact, the classification accuracy based on the base features plus the two kPCA-based features (LOF value and the first dimension of the embedded space) never surpasses the classification accuracy based on the base features only, in the range we searched for an optimal pair of SVM parameters [18]. However, including both subsets of the proximity-based features for classification could lead to a significantly greater test escape detection rate than including either of the subsets alone. In this case, incorporating both subsets of the proximity-based features allows the classification to focus on the additional information that can be effectively generalized to the testing set and be free from the discrepancies between datasets.

B. Classification Accuracy

Fig. 7 demonstrates the relative operating characteristics (ROC) curves, i.e. the test escape detection (true positive) rate vs. the yield loss (false positive) rate, of the classification based on the base features with and without the new proximity-based features. The two ROC curves exhibit different trends and cross each other at a yield loss rate of approximately 0.01%. This indicates that including the proximity-based features does provide more information, otherwise the classification accuracy would not be affected. The additional information provided, however, does not generalize from the training set to the testing set and becomes counter-productive at a very low yield loss rate. Given sufficient yield loss rate (> 0.01%), the additional information from the proximity-based features starts to help classify more test escapes and improves the test escape detection rate to 31%, compared with 27% for using the base features alone at a yield loss rate of 0.027%. Therefore, even after the standardizations on the production test data and on the proximity-based features for each wafer, there still exist some significant discrepancies between the training set and the testing set. The cause of such discrepancies requires further investigation and should be removed to improve the consistency between the training set and the testing set.

In principle, whether it makes sense or not to apply the proximity-based features for statistical tests in addition to the existing base features depends on the cost and quality requirement of the products. For example, including proximity-based features in the analysis may not be cost effective for a high-volume product that requires real-time application of the analysis, e.g. chips for mobile devices. On
the other hand, for an extremely quality demanding product that does not require real-time analysis, e.g., processors for centralized servers and chips for safety critical systems, applying the proximity-based features for offline statistical tests could help screen more test escapes without incurring unacceptable extra cost.

VI. Conclusions

This paper proposes a new set of proximity-based features based on a collection of base features: residual vectors with respect to three different expected values of test measurements. We demonstrate a complete flow of generating additional informative features and the reasoning for each step. To expose the abnormalities of test escapes, the proposed method first compares each chip with all other chips on the same wafer in the feature space composed of the base features, followed by constant shift embedding to embed the proximity matrix into an equivalent Euclidean embedding with no distortions. The outlying level of each chip in the embedded space is then converted into a single score using local outlier factor, and the LOF values, jointly with the first dimension of each embedded space, are used as the new features for test escape screening. The experimental results based on an industrial production test dataset demonstrate that the proximity-based features provide additional information revealing the abnormalities of some test escapes, which further improves the test escape detection rate beyond the state-of-the-art methods that are already comprehensive for test escape detection.

Acknowledgments

We would like to acknowledge the Semiconductor Research Corporation (SRC) and the Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan for their support on this work, and the input by Dr. Chun-Lung Hsu of ITRI.

References